
ECE 150 Fundamentals of Programming

Prof. Hiren Patel, Ph.D.

Douglas Wilhelm Harder, M.Math. LEL

hdpatel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

For loops

2
For loops

Outline

• In this lesson, we will:

– Introduce the concept of repetition and the for loop

– Look examples using the loop variable

– Author a program to determine if an integer is prime

– Consider the different variations of a for loop

– Look at three examples of a loop within a loop

3
For loops

Repetition statements

• Suppose we wanted to repeat an action a fixed number of times

#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

for (int k{1}; k <= 10; ++k) {

std::cout << "Hello!" << std::endl;

}

return 0;

}

Output:

Hello!
Hello!
Hello!
Hello!
Hello!
Hello!
Hello!
Hello!
Hello!
Hello!

4
For loops

The components of a for loop

• Looking at the for loop:

for (int k{1}; k <= 10; ++k) {

// The loop body

std::cout << "Hello!" << std::endl;

}

The loop variable and its initial value

A condition that is tested, and if true, the loop body is executed

The statement to update the loop variable
after each execution of the loop body

5
For loops

Performing a loop

• Working through this example:

for (int k{1}; k <= 5; ++k) {

// The loop body

std::cout << "Hello!" << std::endl;

}

– A loop variable k is initialized with the value

k 1

Hello!

k 2

Hello!

k 3

Hello!

k 4

Hello!

k 5 Hello!k 6

Output:

6
For loops

Calculating n!

• Here we calculate the value of 5!

int factorial{1};

for (int k{1}; k <= 5; ++k) {

// The loop body

factorial *= k;

}

std::cout << factorial << std::endl;

Output:

factorial 1

120

k 1

factorial 1

k 1

factorial 1

k 2

factorial 1

k 2

factorial 2

k 3

factorial 2

k 3

factorial 6

k 4

factorial 6

k 4

factorial 24

k 5

factorial 24

k 5

factorial 120

k 6

factorial 120factorial 120

7
For loops

Is n prime?

• Let us determine if an integer n is prime

– By definition, n is prime if it is divisible only by 1 and n

– In other words, n is prime if it is not divisible by 2, 3, …, n – 1

– If n is divisible by k,

the remainder of n ÷ k of zero

– In C++, we find the remainder of n ÷ k by calculating n%k

– Therefore, test if n%k == 0 for k going from 2 to n - 1

8
For loops

Is n prime?

• Implementing this in a program:
int main() {

int n{};

std::cout << "Enter an integer: ";

std::cin >> n;

bool is_prime{true};

for (int k{2}; k < n; ++k) {

if (n%k == 0) {

is_prime = false;

}

}

if (is_prime) {

std::cout << "The integer " << n << " is prime" << std::endl;

} else {

std::cout << "The integer " << n << " is not prime" << std::endl;

}

return 0;

}

for (int k{2}; k <= n - 1; ++k) {

}

9
For loops

Is n prime?

• Do we have to test all integers?

– If n is divisible by 14,

then n must be divisible by at least one of 2 or 7

– Therefore, we only have to test if n is divisible

by all prime numbers k between 2 and n – 1

– Problem: we don’t have a list of all prime numbers…

– We do know, however, that all even numbers after 2 are not prime

• Can we avoid calculating n%k for even values of k?

• Strategy: test if n%2 == 0,

if not, test n%k == 0 for k from 3, 5, 7, 9, …, up to n - 1

10
For loops

Is n prime?

• We could use the following condition statement and for loop:

if ((n != 2) && (n%2 == 0)) {

is_prime = false;

} else {

for (int k{3}; k < n; ++k) {

// Only test if n is divisible by k for odd k

if (k%2 != 0) {

// k must be odd

if (n%k == 0) {

is_prime = false;

}

}

}

}

11
For loops

Is n prime?

• Recall that ++k is the same as k += 1, so this is also valid:

if (n%2 == 0) {

is_prime = false;

} else {

for (int k{3}; k < n; k += 1) {

// Only test if n is divisible by k for odd k

if (k%2 != 0) {

// k must be odd

if (n%k == 0) {

is_prime = false;

}

}

}

}

12
For loops

Is n prime?

• Therefore, we could just use the following:

if (n%2 == 0) {

is_prime = false;

} else {

for (int k{3}; k < n; k += 2) {

if (n%k == 0) {

is_prime = false;

}

}

}

13
For loops

Is n prime?

• Let us determine if an integer n is prime
bool is_prime{true};

if (n <= 1) {

is_prime = false;

} else if (n == 2) {

// Do nothing

} else if (n%2 == 0) {

is_prime = false;

} else {

for (int k{3}; k < n; k += 2) {

if (n%k == 0) {

is_prime = false;

}

}

}

if (is_prime) {

std::cout << "The integer " << n << " is prime" << std::endl;

} else {

std::cout << "The integer " << n << " is not prime" << std::endl;

}

14
For loops

Different update statements

• Here we use this loop variable in a calculation:

int sum{0};

for (int k{1}; k <= 20; k *= 2) {

// The loop body

sum += k;

}

std::cout << sum << std::endl;

k 1

sum 0

Output:

k 1

sum 1

k 2

sum 1

k 2

sum 3

k 4

sum 3

k 4

sum 7

k 8

sum 7

k 8

sum 15

k 16

sum 15

k 16

sum 31

k 32

sum 31sum 31sum 0

31

15
For loops

Looping down

• You can also use this loop variable:

for (int k{4}; k >= 0; --k) {

// The loop body

std::cout << k << std::endl;

}

– A loop variable k is initialized with the value

k 4

4

k 3

3

k 2

2

k 1

1

k 0 0k -1

Output:

16
For loops

Arbitrary starting and ending points

• Of course, your end-points need not be 0 or 1:

for (int k{256}; k < 1024; ++k) {

// The loop body

std::cout << k << std::endl;

}

– Loops with k taking values from 256 up to 1023

for (int k{256}; k > 128; --k) {

// The loop body

std::cout << k << std::endl;

}

– Loops with k taking values from 256 down to 129

17
For loops

The most important loop

• The most important loop you will see in this course:

– Given any positive integer N

for (int k{0}; k < N; ++k) {

// The loop body

std::cout << k << std::endl;

}

loops with k taking values from 0 up to N – 1

– This is equivalent to:

for (int k{0}; k != N; ++k) {

// The loop body

std::cout << k << std::endl;

}

18
For loops

Loops within loops

• Loops within loops:

– Given two integers, m and n, create the following ASCII art:

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

m rows

n columns

19
For loops

Loops within loops

• We will require a loop that prints each of the m rows

– This outer loop must run from 1 to m

• For each row, we must print n asterisks

– This requires an inner loop from 1 to n

– At the end of each execution of the inner loop,

we must print an end-of-line

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

m rows

n columns

20
For loops

Loops within loops

int main() {

int m{};

int n{};

std::cout << "Enter the number of rows: ";

std::cin >> m;

std::cout << "Enter the number of columns: ";

std::cin >> n;

for (int rows{1}; rows <= m; ++rows) {

for (int colunms{1}; columns <= n; ++columns) {

std::cout << "* ";

}

std::cout << std::endl;

}

return 0;

}

21
For loops

Loops within loops

• Loops within loops:

– Given one integer, n, create the following ASCII art:

*

* *

* * *

* * * *

* * * * *

* * * * * *

n rows

n columns

22
For loops

Loops within loops

int main() {

int n{};

std::cout << "Enter the number of rows of the square matrix: ";

std::cin >> n;

for (int rows{1}; rows <= n; ++rows) {

for (int colunms{1}; columns <= n; ++columns) {

if (columns <= rows) {

std::cout << "* ";

}

}

std::cout << std::endl;

}

return 0;

}

23
For loops

Loops within loops

• Note, however,

– In row 1, we print 1 asterisk

– In row 2, we print 2 asterisks

– In row 3, we print 3 asterisks

*

* *

* * *

* * * *

* * * * *

* * * * * *

n rows

n columns

24
For loops

Loops within loops

int main() {

int n{};

std::cout << "Enter the number of rows of the square matrix: ";

std::cin >> n;

for (int rows{1}; rows <= n; ++rows) {

for (int colunms{1}; columns <= rows; ++columns) {

std::cout << "* ";

}

std::cout << std::endl;

}

std::cout << std::endl;

return 0;

}

25
For loops

Conditional statements
within loops within loops

• Loops within loops:

– Given one integer, n, create the following ASCII art:

o * * * * *

o * * * *

o * * *

o * *

o *

o

n rows

n columns

26
For loops

Conditional statements
within loops within loops

for (int rows{1}; rows <= n; ++rows) {

for (int colunms{1}; columns <= n; ++columns) {

if (columns < rows) {

std::cout << " ";

} else if (columns == rows) {

std::cout << "o ";

} else {

std::cout << "* ";

}

}

std::cout << std::endl;

}

std::cout << std::endl;

27
For loops

Applications of loops within loops

• These sound like silly games, but these algorithms are all essential
for implementations of linear algebra algorithms

– Initializing the entries of an m × n matrix

– Multiplying an n-dimensional vector by a m × n matrix

– Performing Gaussian elimination on a system of n linear equations
in n unknowns

– Using backward substitution to find a solution to such a system in
row-echelon form

– Multiplying an ℓ × m matrix and a m × n matrix

28
For loops

Summary

• Following this lesson, you now

– Understand how to construct and run a for loop

– Know how to use the loop variable within the loop body

– Understand how we can determine if an integer is prime in C++

• We will see more efficient algorithms later

– Know that the initial value, the conditional statement, and the
update statement can all be modified as necessary

– Understand why a loop may be used inside another loop

• Especially with applications in linear algebra

• This includes some that require loops within loops within loops

– Know that the inner loop can also depend on the loop variable of an
outer loop

29
For loops

References

[1] Wikipedia

https://en.wikipedia.org/wiki/For_loop

[2] cplusplus.com

http://www.cplusplus.com/doc/tutorial/control/

https://en.wikipedia.org/wiki/For_loop
http://www.cplusplus.com/doc/tutorial/control/

30
For loops

Acknowledgments

Proof read by Dr. Thomas McConkey and Charlie Liu.

31
For loops

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

32
For loops

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

